International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 238

ISSN 2229-5518

Big Data - Map Reduce Framework and
Programming Model

Pankaj Singh, Ankur Chaudhary

Abstract - We live in a world of Big Data. This year alone, over a trillion gigabytes of new data will be created globally. According to a survey, by year
2020, 45 zettabytes of data will be stored in the world. Twitter itself generates 7 TB of data every day whereas Facebook generates 10 TB of data every
day. Big Data presents a big challenge — but also exciting new opportunities for enterprises to rise above the competition. The volume of the data
generated in an organization is on an increase while the percent of the data we can analyze is on decline. Hence organizations require an efficient and
scalable storage system to manage data growth. Scale-out storage, paired with powerful analytics tools that can derive valuable insight from oceans of

content, are the right combination for making the most of big data.

Index Terms—Big Data, Map Reduce, Framework, Programming Model, Reducer, Mapper, Fault Tolerance.

1. INTRODUCTION

MapReduce is a software framework for easily writing
applications which process vast amounts of data (multi-
terabyte data-sets) in-parallel on large clusters (thousands
of nodes) of commodity hardware in a reliable, fault-
tolerant manner.

Input Splitting Mapping Shuttling Reducing Final result

o Bear2

[Deen _ <

| Doer Bear River
v [mmrl |
-
Car, 1 |

Ca:Cnerel — o[carCar Aiver J»— Car, 1

Tﬁ‘lurl |
-

Deer Car Bear
"] Deer, 1 | o Deer.2 |
Deer, 1 |
P Deer, |
Deer Car Bear - Car1 >
Lsnu !Rwam ~| River.2 |
River, | T

MapReduce has become a dominant parallel computing
paradigm for big data, i.e., colossal datasets at the scale of
tera-bytes or higher. Ideally, a MapReduce system should
achieve a high degree of load balancing among the
participating machines, and minimize the space usage, CPU
and I/O time, and network transfer at each machine.

2. FRAMEWORK

The MapReduce framework consists of a single master
JobTracker and one slave TaskTracker per cluster-node. The
master is responsible for scheduling the job’s component
tasks on the slaves, monitoring them and re-executing the
failed tasks. The slaves execute the tasks as directed by the
master.

Map Phase Reduce Phase

DFS (Distributed File System) is a distributed file system
designed to run on many commodity hardware.DFS is fault
tolerant and designed to be deployed on low cost
hardware.

Job Tracker is a job configuration which specifies the map
(M1, M2, M3 etc), combine and reduce function, as well as
the input and output path of the data. JobConf is the
primary interface for a user to describe a MapReduce job
for execution. The framework tries to faithfully execute the
job as described by JobConf. The JobTracker will first
determine the number of splits (each split is configurable,
~16-64MB) from the input path, and select some
TaskTracker based on their network proximity to the data
sources, then the JobTracker send the task requests to those
selected TaskTrackers.

Task Tracker will initiate the assigned mapper by extracting
the input data from split, as a child process in a separate
java virtual machine.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013

ISSN 2229-5518

Input format is a chunk of the input that is processed by
single map. Each map processes a single split. Each split is
divided into records and the map processes each record - a
key-value pair in turn.

3. ALGORITHM/PROGRAMMING MODEL
In the MapReduce, a distributed file system (DFS) initially
partitions data in multiple machines and data is
represented as (key, value) pairs. The computation is
carried out using two user defined functions: map and
reduce functions. Both map and reduce functions take a
key-value pair as input and may output key-value pairs.
The map function defined by a user is first called on
different partitions of input data in parallel. The key-value
pairs output by each map function are next grouped and
merged by each distinct key. Finally, a reduce function is
invoked for each distinct key with the list of all values
sharing the key. The output of each reduce function is
written to a distributed file in the DFS.

Now we will look into an algorithm to summarize the input
metric as per the country.

A [|] [| o
1 |aighanisan ! 256111019
2 A [EED 27 i3
¥ |alghanisian LEEL]
4 lsghonisian THAEZOSS0
5 |Alghanisinn Ba1dasz
B |eghanisian RISLTASA
T \sIghanisian LoLooo
B |eigharisen LEG9H FLES
IS isdan 123 TTRSR>
10 _|n Isizn 35BLEEA3E
1L |aighenisian
12 |elihsnisan
13 |alghanisian
1< |Algharisan
L5 [Slghzniduan
16 |arghanisian
17 "gharisian BONG4200
19 sighasan 1l2F=5dEgun
18 |alhadia BATLTS
#0_|ubania 52TL4310
Z1_|Albam LEDELE
72 _|Mlhania (SRR
23 |ubania LO0TAGE4S
2t |rbana B1EEL
25 BIaas 20400000
6 abatia B2ESEIZG
27 dbaia 2
RG]
0 |alhania

As we can see that the input file has two columns -country,
revenue. Our objective is to summarize all revenue data so
that we can have only one row per country with its total
revenue data.

Our next step is to submit the job and initialize Job tracker
and henceforth Task Tracker.

e Edt Mew lermina lapr
Lrootilocalhost =¥ start.sh

[TNFO] @localk
[TYFA] @lncalhnst.

wadn - " 4
[INFO] Rlocalhost.localdomadn jobtracker started, pid 20058
[INFO] @lecalhost.lacaldomadn - tasktracker started, pid 26EES

239

rootlocalhost; ~

Lelp
hatoop

[INFO] Progress - Start hadoop
lacaldomain - nawennda started, pid 26161
araldedaln - secondarpnarentds started, pid JR30R

[TYFO] Progrecs - 1HRk
[I4FO] DeployManayer - Slarl;
[rootdlocathost -] haduf]

The Task Tracker

SUCCEEDED coponenls: [hadoup]; FALLED cosponents: []

now attaches itself with the input

file/split. Below is the command for that in hadoop

bie Edi Mew Jermina labs

[IMFO] Blecalhost.localdemain
[THFO] @localhost.lacaldemain
[TYFO] Prigress - 1TARN

[I4F0) DeplugMansger - Slarl;

rootTiocalinst =

Help

Lroutilocaliost =1# start.sh hadoog
[IMFQ] Progross - Start hadoop
[T¥FO] @lecalhost.lacaldomain -
[TYFO] @lacalnnst. loraldavain -
LINFO] Blocalnust, Localdosain -

navennda started, pld 26161
SRCONIATyRATSNGAR STATTEd, pld PRATA
gty staried, pid 2640
jobtracker started, pid 20658
tacktracker started, pid 26885

SUCCEEDED compomenis: [nasonp); FALLED compiments: [

[root®lecalhest -]# haduep s

put Deskioplecon aszist.csv zcen assist.csv

[raot}localhoct ~1& foptfibm/biginsights/pigsoin/pig
grunt= records = LOAN 'econ_assist.cse’ using Figitorage!','l A5 [country:chararray, sum:lang);
qront= grouped o CEIUP recerds 0¥ country;

grunt= thesum = FOREACH]

Once data gets loaded by the task tracker on mapper, it
process the data and provide result as per the below
mentioned algorithm form.

map (k1,wv1l) — list (k2,v2)

The output from the mapper is fed as the input to the
reducer.

rootPlocalhost; - -ax

be Edi ¥ew lerming Tabs Heip

Lrovtiflocaliost -1# start.sh hadvoy E
[14F0] Progress - Start hadoop

[THFO] Alecaln acaldomain - narenoda started, pid 36161
[T4FA] @lecalhns
LL4HE] s Lios

acAldomRin - secondaryrarenide staried, pid 2320
oualdosadn - dalanude starled, pid 26402

[INFO] Alecal ocaldomadn - jobtracker started, pdd 20858

[TNFO] Placalhost.lacaldemadn - tasktracker itarted, pid 26885

[TUFO] Progrecs - 18Rk

LIHFO] DeplugManayer - SLarl; SUCCEEDED conponenis: [nagonp]; FALLED conpanents: []

[rovtilocalhest ~|# hadoop 5 -put Desktop/econ assist.csy econ assist.cav

[ractdlocalhost ~1# fopt/ibn/biginsights/pig/binipig

Qrint= recards = LOAD ising PigStarage!'.'] AS |country:chararray, sumilangl;

Qrunts gerage o DR cerprds 0¥ Couniry:

grunt> thesun = FUREACH grouped GENERATE group, SUM|records.swn);

qrunts BIAF thezam;

WARH [Thrasd-38] org_apache.hajoop.napred.Jobilient - lse fenericOptionsFarsar far parsing the arguments
L AppLLGatons should deplenent Tagl fer the sane,

The reducer processes the data and gives us the desired
output as per the algorithm

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 240

ISSN 2229-5518

reduce (k2,list(v2)) — list(v2)

root@localhost:- =
e Edt Mew lermina labs Help
1BeLarus, 37082151201
[Caroros, 208185021)
fMaldova, 61124791411
IMararca, 3 3HARIAT5 |
1¥anuslu, Y1B48251L)
[Wictnam, 81334958761 |
(Barbadas, 24584254L)
IParaguay , SIRRRASA |

ind), 1GR4TRETAIL]
F¥ugeslay Repuabl ic, 5787347361)

Another Example - Pesudo code for the word count
algorithm

I: class MAPPER

2. method Map(docid a,doc d)
3 for all term ¢ € doe d do
4 EMIT(term ¢, count 1)

I: class REDUCER
22 method REDUCE(term ¢, counts [e), ¢y, . .)

3 sum +— ()
4 for all count ¢ € counts [¢;,e,,.. .| do
5: sum «— sum +c
6: EMIT(term ¢, count sum)
Input

e Key-value pairs: (docid, doc) stored on the
distributed filesystem

e docid: unique identifier of a document

e doc: is the text of the document itself

e Takes an input key-value pair, tokenize the
document

¢ Emits intermediate key-value pairs: the word is the
key and the integer is the value

The Framework:
¢ Guarantees all values associated with the same key
(the word) are brought to the same reducer.

The Reducer
e Receives all values associated to some keys
e Sums the values and writes output key-value pairs:
the key is the word and the value is the number of
occurrences

4. FAULT TOLERANCE

Since the MapReduce library is designed to help process
very large amounts of data using hundreds or thousands of
machines, the library must tolerate machine failures
gracefully.

One of the main components of Hadoop is the JobTracker,
which is executed as a daemon process that executes on a
master node. The JobTracker is the scheduler and the main
coordinator of tasks. It is in charge of distributing the
MapReduce tasks between the available computing nodes.
Each time the JobTracker receives a new job to execute, it
contacts a set of TaskTracker processes, which are daemons
that execute on the working nodes (one TaskTracker exists
for each worker in the infrastructure). MapReduce tasks are
then assigned to those working nodes for which their
TaskTracker daemons report that they have available slots
for computation (several tasks assigned to the same worker
are handled by a single TaskTracker daemon).

META DATA META DATA
REGPOMNSE REQUEST

=4 11

==

DATA NODE /
TASK
TRACKER

DATA NODE /
TASK
TRACKER

LOCAL
STORAGE

DATA NODE /
TASK
TRACKER

LOCAL
STORAGE

MASTER | BLAVES

I CLOUD INFRASTRUCTURE J

The fault tolerance mechanisms implemented in Hadoop
are limited to reassign tasks when a given execution fails. In
this situation, two scenarios are supported:

1. In case a task assigned to a given TaskTracker fails, a
communication via the Heartbeat is used to notify the
JobTracker, which will reassign the task to another node if
possible.

2. If a TaskTracker fails, the JobTracker will notice the
faulty situation because it will not receive the Heartbeats
from that TaskTracker. Then, the JobTracker will assign the
tasks the TaskTracker had to another TaskTracker.

There is also a single point of failure in the JobTracker,
since if it fails, the whole execution fails. The main benefits
of the standard approach for fault tolerance implemented
in Hadoop consists on its simplicity and that it seems to
work well in local clusters.

5. CONCLUSIONS

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

The MapReduce programming model has been successfully
used at Google,yahoo, facebook for many different
purposes. We attribute this success to several reasons. First,
the model is easy to use, even for programmers without
experience with parallel and distributed systems, since it
hides the details of parallelization, fault-tolerance, locality
optimization, and load balancing. Second, a large variety

of problems are easily expressible as MapReduce
computations. We have learned several things from this
work. First, restricting the programming model makes it
easy to parallelize and distribute computations and to make
such computations fault-tolerant. Second, network
bandwidth is a scarce resource. A number of optimizations
in our system are therefore targeted at reducing the amount
of data sent across the network: the locality optimization
allows us to read data from local disks, and writing a single
copy of the intermediate data to local disk saves network
bandwidth. Third, redundant execution can be used to
reduce the impact of slow machines, and to handle machine
failures and data loss.

REFERENCES

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, pages 137-150, 2004.

[2] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized
pagerank on mapreduce. In SIGMOD, pages 973-984, 2011.

[3] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N.
Koudas. Mrshare: Sharing across multiple queries in
mapreduce. PVLDB, 3(1):494-505, 2010.

[4] B. Panda, J. Herbach, S. Basu, and R.]J. Bayardo. Planet:
Massively parallel learning of tree ensembles with
mapreduce. PVLDB, 2(2):1426-1437, 2009.

[5] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online
aggregation for large mapreduce jobs. PVLDB, 4(11):1135-
1145, 2011.

[6] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of
computation for mapreduce. In SODA, pages 938-948, 2010.

[7] Communications between the TaskTrackers and the
JobTracker in Hadoop, Kadirvel and Fortes, 2013.

[8] Apache Hadoop, 2013 and Patil and Soni,2013

[9] R. Chaiken, B. Jenkins, P. ake Larson, B. Ramsey, D. Shakib,
S. Weaver, and]J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265-1276,
2008.

IJSER © 2013
http://www.ijser.org

241

http://www.ijser.org/

	References

