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Abstract - We live in a world of Big Data. This year alone, over a trillion gigabytes of new data will be created globally. According to a survey, by year 
2020, 45 zettabytes of data will be stored in the world. Twitter itself generates 7 TB of data every day whereas Facebook generates 10 TB of data every 
day. Big Data presents a big challenge – but also exciting new opportunities for enterprises to rise above the competition. The volume of the data 
generated in an organization is on an increase while the percent of the data we can analyze is on decline. Hence organizations require an efficient and 
scalable storage system to manage data growth. Scale-out storage, paired with powerful analytics tools that can derive valuable insight from oceans of 
content, are the right combination for making the most of big data. 

Index Terms—Big Data, Map Reduce, Framework, Programming Model, Reducer, Mapper, Fault Tolerance. 

——————————      —————————— 
 

1. INTRODUCTION 

MapReduce is a software framework for easily writing 
applications which process vast amounts of data (multi-
terabyte data-sets) in-parallel on large clusters (thousands 
of nodes) of commodity hardware in a reliable, fault-
tolerant manner. 

 

MapReduce has become a dominant parallel computing 
paradigm for big data, i.e., colossal datasets at the scale of 
tera-bytes or higher. Ideally, a MapReduce system should 
achieve a high degree of load balancing among the 
participating machines, and minimize the space usage, CPU 
and I/O time, and network transfer at each machine. 

 

2. FRAMEWORK 

The MapReduce framework consists of a single master 
JobTracker and one slave TaskTracker per cluster-node. The 
master is responsible for scheduling the job’s component 
tasks on the slaves, monitoring them and re-executing the 
failed tasks. The slaves execute the tasks as directed by the 
master. 

 

DFS (Distributed File System) is a distributed file system 
designed to run on many commodity hardware.DFS is fault 
tolerant and designed to be deployed on low cost 
hardware. 

Job Tracker is a job configuration which specifies the map 
(M1, M2, M3 etc), combine and reduce function, as well as 
the input and output path of the data. JobConf is the 
primary interface for a user to describe a MapReduce job 
for execution. The framework tries to faithfully execute the 
job as described by JobConf. The JobTracker will first 
determine the number of splits (each split is configurable, 
~16-64MB) from the input path, and select some 
TaskTracker based on their network proximity to the data 
sources, then the JobTracker send the task requests to those 
selected TaskTrackers. 

Task Tracker will initiate the assigned mapper by extracting 
the input data from split, as a child process in a separate 
java virtual machine. 
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Input format is a chunk of the input that is processed by 
single map. Each map processes a single split. Each split is 
divided into records and the map processes each record – a 
key-value pair in turn. 
 

3. ALGORITHM/PROGRAMMING MODEL 
In the MapReduce, a distributed file system (DFS) initially 
partitions data in multiple machines and data is 
represented as (key, value) pairs. The computation is 
carried out using two user defined functions: map and 
reduce functions. Both map and reduce functions take a 
key-value pair as input and may output key-value pairs. 
The map function defined by a user is first called on 
different partitions of input data in parallel. The key-value 
pairs output by each map function are next grouped and 
merged by each distinct key. Finally, a reduce function is 
invoked for each distinct key with the list of all values 
sharing the key. The output of each reduce function is 
written to a distributed file in the DFS. 
 
Now we will look into an algorithm to summarize the input 
metric as per the country. 
 

 
 

As we can see that the input file has two columns –country, 
revenue. Our objective is to summarize all revenue data so 
that we can have only one row per country with its total 
revenue data. 
 
Our next step is to submit the job and initialize Job tracker 
and henceforth Task Tracker. 
 

 
 

The Task Tracker now attaches itself with the input 
file/split. Below is the command for that in hadoop 
 

 
 
Once data gets loaded by the task tracker on mapper, it 
process the data and provide result as per the below 
mentioned algorithm form. 
 

 
 
The output from the mapper is fed as the input to the 
reducer.  
 
 
 

 
 
The reducer processes the data and gives us the desired 
output as per the algorithm 
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Another Example – Pesudo code for the word count 
algorithm 
 
 

 
Input:  

• Key-value pairs: (docid, doc) stored on the 
distributed filesystem 

• docid: unique identifier of a document 
• doc: is the text of the document itself 

 
Mapper: 

• Takes an input key-value pair, tokenize the 
document 

• Emits intermediate key-value pairs: the word is the 
key and the integer is the value 

 
The Framework: 

• Guarantees all values associated with the same key 
(the word) are brought to the same reducer. 

 
The Reducer 

• Receives all values associated to some keys 
• Sums the values and writes output key-value pairs: 

the key is the word and the value is the number of 
occurrences 

 

4. FAULT TOLERANCE 
 
Since the MapReduce library is designed to help process 
very large amounts of data using hundreds or thousands of 
machines, the library must tolerate machine failures 
gracefully. 
 
One of the main components of Hadoop is the JobTracker, 
which is executed as a daemon process that executes on a 
master node. The JobTracker is the scheduler and the main 
coordinator of tasks. It is in charge of distributing the 
MapReduce tasks between the available computing nodes. 
Each time the JobTracker receives a new job to execute, it 
contacts a set of TaskTracker processes, which are daemons 
that execute on the working nodes (one TaskTracker exists 
for each worker in the infrastructure). MapReduce tasks are 
then assigned to those working nodes for which their 
TaskTracker daemons report that they have available slots 
for computation (several tasks assigned to the same worker 
are handled by a single TaskTracker daemon). 
 

 
 
The fault tolerance mechanisms implemented in Hadoop 
are limited to reassign tasks when a given execution fails. In 
this situation, two scenarios are supported: 
 
1. In case a task assigned to a given TaskTracker fails, a 
communication via the Heartbeat is used to notify the 
JobTracker, which will reassign the task to another node if 
possible. 
 
2. If a TaskTracker fails, the JobTracker will notice the 
faulty situation because it will not receive the Heartbeats 
from that TaskTracker. Then, the JobTracker will assign the 
tasks the TaskTracker had to another TaskTracker. 
 
There is also a single point of failure in the JobTracker, 
since if it fails, the whole execution fails. The main benefits 
of the standard approach for fault tolerance implemented 
in Hadoop consists on its simplicity and that it seems to 
work well in local clusters. 
 
 
 

5. CONCLUSIONS 
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The MapReduce programming model has been successfully 
used at Google,yahoo, facebook for many different 
purposes. We attribute this success to several reasons. First, 
the model is easy to use, even for programmers without 
experience with parallel and distributed systems, since it 
hides the details of parallelization, fault-tolerance, locality 
optimization, and load balancing. Second, a large variety 
of problems are easily expressible as MapReduce 
computations. We have learned several things from this 
work. First, restricting the programming model makes it 
easy to parallelize and distribute computations and to make 
such computations fault-tolerant. Second, network 
bandwidth is a scarce resource. A number of optimizations 
in our system are therefore targeted at reducing the amount 
of data sent across the network: the locality optimization 
allows us to read data from local disks, and writing a single 
copy of the intermediate data to local disk saves network 
bandwidth. Third, redundant execution can be used to 
reduce the impact of slow machines, and to handle machine 
failures and data loss. 
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